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Some Rules for §(—2k) Dipole Sums?
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Stieltjes conditions and the ratio test provide necessary but not sufficient
conditions on S(—2k) dipole sums. If the dipole sums are accurate the
associated [n, n —1] Padé approximant provides a better representation of
a(w), the frequency-dependent dipole polarizability, than a truncated series
expression and, in addition, should bound a(w) below. It is shown how
constraints on the dipole sums effect the form of the [2, 1] Padé approximant
and an additional constraint is derived that ensures the analyticity of the
approximant on () = w < ;. There then follows a discussion of the reliability of
available literature dipole sum values for small molecules containing H, C, N
and O.
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1. Introduction

The dipole oscillator sums S(—2k)[1], k =1,2 ..., or Cauchy coefficients, are the
coefficients of the Cauchy power series representation of the frequency-depen-
dent dipole polarizability, a (),
alw)= Y S(-2k-2)0**. 1)
k=0,
Thus, a knowledge of the dipole sums of a system will provide information on

optical properties and interaction coefficients related to a (w).
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This paper attempts to address the problem of how to decide if a given set of dipole
sums is reasonable or not. We are led to discuss this since literature values for
some small molecular systems can differ and, therefore, it is desirable to find
criteria to select which set is the most reliable.

It is well known that «(iw) is a series of Stieltjes and as a consequence, the
coefficients in Eq. (1) should satisfy the determinantal relationships

D(n,m)>0 m=0,1,...;n=-1,0,... )
where
S(—2n-2) S(—2n—4) cre S(=2n-2m-—-2)
Dlwmy—| SE22= SC2n=6) o S(2n-2mod)
S(=2n—2m—2) S(=2n-2m—4) --- S(~2n—4m—2)

Clearly any sums, however determined, should satisfy these conditions.
Considering the electronic dispersion region only and ignoring infra-red contri-
butions, (assuming separability these can be incorporated later; see, for example,
[3]) it follows that a () is analytic for 0 < w < w; and singular at » = w; where w
is the first allowed dipole transition. Hence, the radius of convergence of Eq. (1)
will be w; and from the ratio test

S(—2n) o 2
S(—2n-2)" !

Given a set of the first M dipole sums, rather than using Eq. (1) and truncating
after M terms it should be a better procedure to use the asociated Padé
approximant [2]. This is because the latter will include some estimate of the higher
order terms. In addition, if the sums are accurate,

[n,n—1]=a(w) 4)

i.e.the[n, n — 1]Padé approximant underestimates the higher order contributions
[2]. However, if the sums used to form the Padé approximant are inaccurate, Eq.
(4) may be violated and/or the truncated series may be a better representation.

n=1,2,3,.... (3)

Here we consider cases where the dipole sums are known to $(—8) and we show, in
a straightforward fashion, how the constraints of Egs. (2) and (3) affect the form of
the {2, 1] Padé approximant. First, however, we derive an additional constraint
that ensures the analyticity of the Padé approximant on 0=<w <w,; before
discussing some other possible pointers to the reliability or otherwise of the dipole
sums.

2. The [2,1] Padé Approximant

Given the $(—2k) through S(—8), the [2,1] Padé approximant can be obtained in
the form

[2,1]1= (a0 + a10*)/(1 + b1+ brw*) (5)
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where the coefficients may be determined in terms of the sums by making Egs. (1)
and (5) agree to order w®. It is often more convenient to rewrite Eq. (5) as
2 11= Ly L ©)

a W wp —wW

where {f;, w;} are effective oscillator strengths and transition frequencies, respec-
tively.

To obtain constraints on the constants in Egs. (5) and (6), two possible approaches
are available. Starting with Eq. (5) the determinantal conditions can be used; for
example, in the case of b; we can write

b1=[S(~8)S(~2)—S(~6)S(—4))/[S(—4)* - S(-2)S(—6)]. (7
The condition D(n, 1) >0 ensures the monotonicity of the sequence of ratios
S(-2n)/S(-2n-2)>8(—2n-2)/S(-2n—-4) (8)

and this, with n =1 and # =2, implies »; <0. Similarly #,>0, ao=S(-2) and
—a1<Nb, where N is the number of electrons.

Alternatively it is possible to begin with Eq. (6) and impose the conditions:
fa>0sfb>0’wi>0’wl2v>0 (9)

so that Eq. (6) represents a monotonic decreasing function of iw. For Eq. (4) to be
satisfied as w - % we require, further, that

fatfs=N. (10)

We should emphasise that these two approaches are entirely equivalent, i.e. Egs.
(9) and (10) imply the determinantal constraints of Eq. (2) to terms involving
S(—8) and vice-versa.

In many respects, however, it can be easier to work from Eq. (6). For example, we
obtain

S(-2n-2)=faw" 7 +fowy "7 (11)
from which it is easy to deduce that
R, =S8(-2n)/S(—2n-2) (12)

is a monotonic decreasing sequence with limit w2 (taking w, <w,), c.f. Eq. (3). Itis
also possible to show that, after a certain value of n (which may be n =1 or even
n = 0) the differences R, — R,+; become monotonic decreasing.

The majority of these conditions derive from the fact that a(iw) is a series of
Stieltjes, i.e. depend on a very general property of a. The only criterion which is
characteristic of the individual atom or molecule under consideration follows
from the fact that the first pole of a (w) occurs at w = w;. If the sums used to find
the [2, 1]Padé approximant are accurate, we know from Eq. (4) that[2, 1]= a(w)
on [0, w] so that

Wa Zwl. (13)
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Since w, will depend on the dipole sums, this constraint imposes conditions on
these sums which can be used to test the sum values if w; is known. These
conditions are:

R,—R;_ ,

R2R2_R3Za)1 (14)
0] w3 1

S(—2) S(—-4) S(-6)|=0. (15)

5(-4) S(-6) S(-8)

3. Values for Dipole Sums from the Literature for Molecules Containing H,
C,Nand O

A number of techniques are available for use in an attempt to obtain reliable
S(—2k) values [2-15]. These include a variety of semi-empirical methods as well
as purely theoretical procedures which have been applied to atoms [4] and, in
particular, the inert gases. For all but the simplest systems and regardless of
whether they have been determined theoretically or semi-empirically the values
obtained possess some inherent errors [5].

In the case of molecules, the most reliable sum values are found by the con-
struction of dipole oscillator strength distributions (DOSD) [9, 10], however, this
is a considerable and time consuming task. More simply empirical fits can be made
to refractivity data to determine « (w) from which the sums are extracted via Eq.
(1). Errors arise due to limitations in the accuracy of the experimental measure-
ments and the range over which they are taken. Further errors can be introduced
in the use of Eq. (1) since the coefficients depend on the number of terms kept in
the truncated power series [16]. This is because the terms excluded are effectively
taken to be zero and so the remaining terms have to compensate for this.

Table 1 lists literature values of S(—2k) for a number of molecules. These are
calculated by well-respected methods but different calculations on the same
molecules can give disturbingly different results. We now discuss whether it is
possible to assess the accuracy of these various results. The criteria used fall into
two classes: theoretical ones which follow from fundamental properties and
purely empirical ones which seem to be satisfied by the majority of calculated
sums.

(i) The determinantal relations:

These are given by Eq. (2). Many authors have stressed the need to include these
constraints when the S(—2k) are determined. All the values obtained from fits to
refractive index data given in Table 1 [2, 3, 14, 15] have incorporated this and
hence satisfy these relations. The DOSD sum values [9, 10] all satisfy the Stieltjes
conditions as well, but were not constrained to do so. However, it is clear from the
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Table 1. Literature dipcle sum values for molecules containing H, C, N and O atoms*®

Molecule® S(0) $(-2) S(—4) 5(—6) S(-8)
H, [9] 2 5.428 19.96 82.94 367.0

[2] 2 5.439 20.02 81.61 350.0
N, [9] 14 11.74 30.11 101.8 384.6

[2] 14 11.74 30.17 99.21 374
0, [9] 16 10.59 34.75 237.1 2196

[2] 16 10.60 36.97 132.0 480
NO [9] 15 11.52 38.46 276.2 3194

[14] 15 11.52 39.05 246 4190
co [15] 14 13.09 47.84 318.6 2800
CO, [3] 22 17.56 49.23 235 1200
N,O [9] 22 19.70 72.11 410.7 2847
H,0 [9] 10 9.642 35.42 240.1 2299
NH; [9] 10 14.56 71.44 684.0 9527
CH, [10] 10 17.27 62.41 298.3 1714

2 In atomic units [19].
P Literature source in parenthesis.

table that these relations by themselves do not preclude very different sets of sum
values being obtained for a given molecule.

(ii) Conditions involving the first electronic transition frequency ws:

These are given by Egs. (3), (14) and (15). Where accurate values of w; (either
experimental or theoretical) are known, these conditions should surely be
included as constraints in the same way as the determinantal conditions.
Unfortunately, for molecules larger than diatomics there are severe problems in
obtaining experimental estimates for w1, since spectral resolution is complicated
by overlapping vibrational and rotational bands [17] (see footnotes to Table 2).
Nevertheless, in Table 2 we have listed what we believe to be the most likely
values of wi. In the same table are listed w,, ws, f4, f» Obtained from the {2, 1] Padé
approximants. For comparison we also give the single frequency and oscillator
strength, w, and f, respectively, taken from the [1, 0] Padé approximant; the
[1, 0] approximant is, of course, found by using $(—2) and §(—4) only.

Given that the w; values are correct, then Egs. (3), (14) and (15) are satisfied by all
the entries in the table with the single exception of the NO results of Nielson et al.
[14] which, therefore, must be regarded with suspicion. We make the empirical
observation that w, typically has a value around 0.55 while w, has a much reduced
value which is quite close to w;. However, in all but one case, w, — w1 > 0.03 50 w,
is not too close to w;. A comparison of w;, w, and w; suggests that the
Langhoff-Karplus sums for O, lead to a value for w, which is anomalously high
and to a lesser extent the same is true for Pack’s CO, sums and Zeiss and Meath’s
N,O and O, values. Effectively if w, < w1, or is very close to it, then the sums are
providing too large a contribution when placed in an [n, n — 1] Padé approximant
and if w, » w, it is likely they are providing a contributijon that is too small.
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(iii) Effective oscillator strengths:
These should satisfy the condition:
f:z<fa+fb<N (16)

which they do. Indeed except for H, and CO, the second inequality can be
replaced by « . Because transitions involving inner shell electrons are of very high
energy, it is to be expected that such transitions have a minute affect on the value
of a(w) for small @ and so their contribution to the sum values is probably not
included when the latter are determined empirically, for example from refractive
index measurements at low frequencies. Therefore, in the inequality of Eq. (16) it
should be possible to replace N by N,, the number of valence electrons. This is
confirmed by the values in Table 2; usually, in fact, f, + f; ~3N,, although there
are a few cases where f, +f; is a little larger. There are two cases, Langhoff and
Karplus’s O, results and the NO results of Nielson et al., where f, +f; is rather
low, and where f;, and f, +f, are almost identical. It will be recalled that the same
results led to anomalous w, values. However, the major cause for concern in
Table 2 is the fact that f, + f, for CO, is almost equal to N. We find it difficult to
believe that this can be correct.

{(iv) The ratios R,,:

The R,, given by Eq. (12), form a monotonic decreasing sequence ensured by the
condition D(n, 1) > 0. An empirical point to note is that for all DOSD sum values
D(n, 1), n =-1, 0, 1, is monotonic increasing whereas the values of Langhoff and
Karplus for O, and N, are not. By forming the ratios R, it can be seen that for both
Langhoff and Karplus’ O, and Pack’s CO, values R is quite far from w7 and the
differences R, — R; are small contrary to the general trend. On the other hand, for
the NO sums found by Nielson et al., R5 is already very close to w3. Except for
these values R; is near w; but with R3—w? >0.03. In all cases the differences
R, — R, 1 are monotonic decreasing for n =0 onwards.

4. Bounds to Dispersion Interaction Coefficients

Normally the most useful application of the effective oscillator strengths and
transition frequencies {f;, w:} is in the calculation of lower bounds to dipole
dispersion coefficients Cs, v3, d4. Also, upper bounds can be found by determining
similar quantities {f;, &;} obtained from Padé approximants to the function
B=N+w’a(w) [18]. In the case of the upper bounds the effective oscillator
strengths are constrained to sum to N, i.e. f,+f, =N.

Table 2 gives upper and lower bounds to Cs (for interactions between identical
molecules) obtained via the various sum values. It must be stressed that the
nomenclature is misleading since the bounds are true bounds only in so far as the
sum values are correct. Any errors in the latter can mean that the bounding
properties no longer hold and the exact Cs values can lie outside the calculated
bounds. This is shown clearly by the O, results: one set of sums implies 45 < Cg <
47 and another that 56 < Cs<75. They cannot both be correct.
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If we accept most of the values for Cs, then it is clear that the use of sums up to
S(—8) does not give very tight bounds, and it is doubtful if the determination of
higher order sums can be sufficiently accurate to improve the situation. Therefore,
the calculation of Cy values via sums and Padé approximants which seemed to
promise very accurate results on the basis of those obtained for atoms has proved
much less successful when applied to molecules. In view of this those sets of sum
values which lead to very tight bounds must be treated with reserve. These are
precisely those which lead to abnormal values for w,, f, +f, and R,..

Several points made in Sects. 3 and 4 have already been mentioned previously by
Zeiss and Meath [9]. Here we have presented them in a mathematical way
whereas they have discussed them in a more physical context.
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